Purification of two species of exudate cysteine-proteinase inhibitors that are acute-phase reactants in the carrageenin-induced inflammation in rats

Hideo Nakagawa and Kazunari Hirata

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani, Toyama 930-01, Japan

Received 26 July 1986

Two species of cysteine-proteinase inhibitors (CPIs) have been purified to homogeneity from exudate in the carrageenin-induced inflammation in rats. The exudate CPIs were separated into two forms (named CPI-1 and -2) in affinity chromatography on S-carboxymethyl-papain-Sepharose, the final stage of purification. CPI-1 and -2 gave different mobilities in polyacrylamide gel electrophoresis (PAGE), probably because of different isoelectric points (pI 4.47 for CPI-1 and pI 4.21 for CPI-2). Both CPI-1 and -2 showed immunological identity in double immunodiffusion and same molecular mass of 68 kDa when analysed by SDS-PAGE. These results indicate that CPI-1 and -2 are very similar but distinct CPIs. CPI-1 and -2 are acute-phase reactants and probably represent two species of T-kininogens having inhibitory activity toward cysteine proteinases.

Acute-phase reactant

Cysteine-proteinase inhibitor

α, Acute-phase protein

T-kininogen

Inflammation

1. INTRODUCTION

Plasma concentration of several proteins markedly increases in inflammation, connective tissue disorders and cancer [1-3]. One of these acute-phase reactants in rats is α_1 MAP that is identical to α_1 CPI [4,5]. This CPI has been identified as T-kininogen which contains a T-kinin sequence (Ile-Ser-bradykinin) [6,7]. Recently, Furuto-Kato et al. [6] reported the close resemblance in nucleotide sequence between the α_1 MAP mRNA and the T-prekiningen mRNAs by the cloning and sequence analysis of cDNAs for rat lowmolecular-mass prekininogens including prekiningeen and two types of T-prekiningeens. The increase in plasma CPIs is due to the increase

Abbreviations: CPI(s), cysteine-proteinase inhibitor(s); α_1 MAP, α_1 major acute-phase protein; PAGE, polyacrylamide gel electrophoresis; Cm, S-carboxymethyl; BAPNA, N^{α} -benzoyl-DL-arginine p-nitroanilide

in T-kininogens that are able to inhibit cysteine proteinases [8,9]. We report here the purification of two types of exudate CPIs that are acute-phase reactants in the carrageenin-induced inflammation in rats.

2. MATERIALS AND METHODS

2.1. Materials

DEAE-Sephacel, Sephadex G-150 and CNBractivated Sepharose 4B were purchased from Pharmacia; Ampholine (pH 4-6) was from LKB Instruments; papain (type IV) and BAPNA from Sigma; gelatin and Freund's complete adjuvant from Difco and carrageenin (Seakem 202) was from Marine Colloid Inc. All other reagents were of the highest purity available.

2.2. Collection of exudate from inflamed rats

Inflammation was induced by a subcutaneous injection of 4 ml of a 2% (w/v) solution of carrageenin into a preformed air-pouch on the back

of rats (male Wistar rats weighing 150-180 g) [10]. Inflammatory fluid was collected from the carrageenin-air pouch on day 7 after the carrageenin injection and centrifuged at $100\,000 \times g$ for 2 h at 4°C. The supernatant (exudate) was stored at -30°C until use.

2.3. Purification of CPIs

All purification procedures were carried out at 4°C. The exudate (total 650 ml) was thawed and dialyzed against 0.02 M Tris-HCl buffer (pH 7.8) containing 2 mM CaCl₂ and 0.02% NaN₃. The dialyzed exudate was chromatographed on a DEAE-Sephacel column (2.6 × 36 cm) with a linear gradient of NaCl from 0 to 0.4 M. Papain-inhibiting fractions from the DEAE-Sephacel column were pooled and fractionated by 70% saturation with (NH₄)₂SO₄. The resulting precipitate was dissolved and dialyzed against 0.05 M Tris-HCl buffer (pH 7.5) containing 1 M NaCl, 5 mM CaCl₂ and 0.02% NaN₃. The dialyzed sample was applied to the Sephadex G-150 column (3.2 × 85 cm) that had been equilibrated in the same buffer.

Papain-inhibiting fractions obtained from gel filtration were pooled and dialyzed against 0.01 M phosphate buffer (pH 7.2) containing 0.145 M NaCl and 0.02% NaN₃ (phosphate buffered saline, PBS). A portion (50 ml) of the dialyzed solution was applied to a Cm-papain-Sepharose 4B column $(1.2 \times 25 \text{ cm})$ which had been prepared according to Anastasi et al. [11]. The binding proteins were eluted stepwise from the column with the following buffer [12]; (i) PBS, (ii) PBS containing 2 M KSCN, (iii) PBS containing 4 mM KSCN and (iv) 0.02 M phosphate buffer (pH 12.1) containing 0.1 M NaCl and 0.02% NaN3. Papain-inhibiting fractions obtained from the Cm-papain-Sepharose column were dialyzed against 0.02 M Tris-HCl buffer (pH 7.2) containing 0.05 M NaCl and 0.02% NaN₃, and stored at -80° C.

During the course of purification CPI was followed by measuring its papain-inhibiting capacity using Barrett's method [13].

2.4. Detection of CPIs by gelatin-containing PAGE

CPI was detected by electrophoresis on polyacrylamide gel copolymerized with gelatin (a substrate of papain) according to Hanspal et al. [14] and Heussen and Dowdle [15]. CPI protects

gelatin from papain digestion and is visualized as a band of undigested gelatin.

2.5. PAGE and SDS-PAGE

Two CPIs were separated by PAGE following the method of Davis [16], using 7% acrylamide. The molecular masses of CPIs were measured by SDS-PAGE according to Laemmli [17], using 7% acrylamide. Samples were reduced with 23-mercaptoethanol just before SDS-PAGE.

3. RESULTS

2.3. Purification of CPIs

Two CPIs were purified from day-7 exudate in three steps; DEAE-Sephacel chromatography, Sephadex G-150 gel filtration and affinity chromatography on Cm-papain-Sepharose. In the final stage of purification, two CPIs were successively eluted with KSCN and phosphate buffer (pH 12.1) from Cm-papain-Sepharose column (fig.1). The two CPIs differed in mobility in PAGE (fig.2) and are referred to as 'CPI-1' and 'CPI-2', in order of elution from Cm-papain-Sepharose column. CPI fractions eluted with 2 M

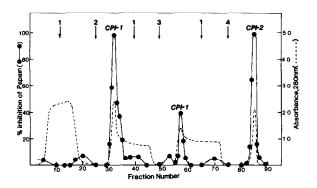


Fig. 1. Cm-papain-Sepharose affinity chromatography. Exudate CPI was partially purified by DEAE-Sephacel column chromatography and Sephadex G-150 gel filtration. The partially purified CPI fraction was applied to Cm-papain-Sepharose column. At the points indicated by arrows, PBS (1), 2 M KSCN (2), 4 M KSCN (3) and 0.02 M phosphate buffer (pH 12.1)-0.1 M NaCl (4) were applied stepwise at a flow rate of 42 ml/h. Effluent fractions of 5 ml were collected and papain-inhibiting activity of each fraction was determined. CPI-1 (fraction nos. 31-34 and no. 56) and CPI-2 (fraction nos 84 and 85) were pooled separately.

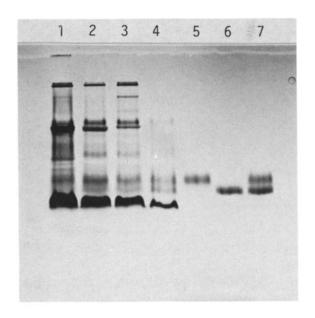


Fig. 2. PAGE at various stages in the purification of exudate CPIs. The samples were taken after (1) day 7; (2) DEAE-Sephacel chromatography; (3) (NH₄)₂SO₄ precipitation; (4) Sephadex G-150 gel filtration; Cm-papain-chromatography of (5) CPI-1, (6) CPI-2 and (7) mixture of CPI-1 and CPI-2.

KSCN had the same properties as those eluted with 4 M KSCN and, therefore, both the fractions were pooled as CPI-1. CPI-1 and -2 showed reactions of complete immunological identity when run in double immunodiffusion against anti-CPI-1 rabbit serum (not shown), suggesting that CPI-1 and -2 are very similar. Each of CPI-1 and -2 gave a single band on PAGE (fig.2), SDS-PAGE and gelatin-containing PAGE (fig.3). These results indicate that each of CPI-1 and -2 is a purified preparation. Table 1 summarizes the purification of exudate CPIs. From 650 ml of day-7 exudate we obtained 543 mg of CPIs in the two separated species, a recovery of 37% (table 1).

3.2. Properties of CPIs

Exudate CPIs are purified into two forms, CPI-1 and -2, that have different mobilities in PAGE (fig.2). These different mobilities in PAGE are due to different isoelectric points; isoelectric points of the CPIs were pI 4.47 for CPI-1 and pI 4.21 for CPI-2 when measured by sucrose density gradient isoelectric focusing in pH 4-6 Ampholine. In SDS-PAGE the mobilities of CPI-1 and -2 were

indistinguishable, corresponding to $M_{\rm r}$ 68 000 \pm 1000 for both CPI-1 and -2. The inhibition of papain by CPI-1 and -2 is non-competitive. $K_{\rm i}$ values of CPI-1 and -2 were 2.7×10^{-7} M and 4.6×10^{-7} M, respectively, when papain was assayed with BAPNA at pH 6.0 in the presence of CPI-1 or -2. No inhibition of serine proteinases such as trypsin and chymotrypsin by CPIs was found.

As shown in fig. 3, both CPI-1 and -2 are present in normal rat plasma in a low concentration, whereas plasma and exudate levels of CPI-1 and -2 markedly increased during the inflammation. On day 2 after carrageenin injection plasma concentrations of CPI-1 and -2 in the inflamed rats were about 14-times higher than those in normal rats when the amounts of CPI-1 and -2 were determined by measuring color intensity of CPI-derived bands in gels after gelatin-containing PAGE. Similarly, on day 7 plasma and exudate concentrations of CPIs in the inflamed rats were about

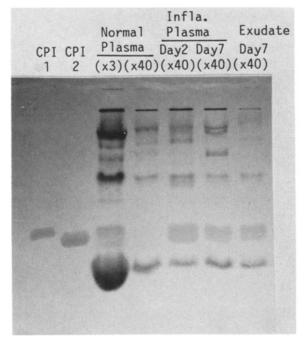


Fig. 3. Gelatin-containing PAGE of plasma and exudate. Plasma and exudate were obtained from inflamed rats on day 2 or 7 after carrageenin injection. Normal plasma was obtained from 7-week-old rats that were about the same age as the inflamed rats. Dilution factors of samples are shown in parentheses. Purified CPI-1 and -2 were run simultaneously.

Table 1
Purification of exudate CPIs

Stage	Total volume (ml)	Total protein (mg)	Total activity (units)	Recovery (%)	Spec. act. (units/mg protein)	Purification factor
Day-7 exudate	650	28535	3380	100	0.119	1.0
DEAE-Sephacel	360	9479	2524	75	0.266	2.3
Sephadex G-150 Cm-papain- Sepharose	413	4766	1830	54	0.384	3.2
CPI-1	184	322	767	23	2.383	20.1
CPI-2	108	221	455	14	2.059	17.4

Units of CPI are defined as mg of papain inhibited in the assay system. Protein was measured by the method of Lowry et al. [19], using bovine serum albumin as a standard

9-times higher than plasma concentration of CPIs in normal rats. These results indicate that both CPI-1 and -2 are acute-phase reactants in the carrageenin-induced inflammation in rats.

4. DISCUSSION

Plasma concentration of CPI-1 and -2 markedly increased in the acute phase and a high concentration of exudate CPIs was found in the chronic phase of the carrageenin-induced inflammation in rats (fig.3). Esnard and Gauthier [5] demonstrated that rat α_1 MAP is identical to α_1 CPI. They also found that the α_1 -CPI gave two electrophoretically distinct components on PAGE but a single band of M_r 68 000 on SDS-PAGE. On the basis of molecular mass and properties on PAGE, these two distinct components in acute-phase rat serum are probably identical to CPI-1 and -2 that we have purified from rat exudate in this study. It has been shown by Bauer et al. [18] that molecular masses of rat α_1 MAP are 68 kDa for a secreted form and 63.5 kDa for an intracellular unglycosylated form when determined by SDS-PAGE. Recently, Furuto-Kato et al. [6] demonstrated that rat lowmolecular-mass prekiningeens are encoded by at least three very similar but distinct mRNAs (Kprekiningen, T-prekiningen I and II mRNAs) and indicated a close similarity between mRNA of rat α_1 MAP and each mRNA of two species of rat T-prekininogens. In addition, Kageyama et al. [9] found that the T-prekiningen I and II mRNAs increase about 10- and 13-fold over their normal

levels after induction of inflammation. A high plasma concentration of CPIs in rats having adjuvant arthritis is almost solely due to the increase in T-kininogen [8]. These findings strongly suggest that CPI-1 and -2 correspond to two species of T-kininogens that have the ability to inhibit cysteine proteinases and markedly increase in an acute phase of inflammation in rats [4-8,18].

REFERENCES

- [1] Koj, A. (1984) in: Pathophysiology of Plasma Protein Metabolism (Mariani, G. ed.) pp. 221-248, Macmillan Press, London.
- [2] Kushner, I. (1982) Ann. NY Acad. Sci. 389, 39-48.
- [3] Cooper, E.H. and Stone, J. (1979) Adv. Cancer Res. 30, 1-44.
- [4] Anderson, K.P. and Heath, E.C. (1985) J. Biol. Chem. 260, 12065-12071.
- [5] Esnard, F. and Gauthier, F. (1983) J. Biol. Chem. 258, 12443-12447.
- [6] Furuto-Kato, S., Matsumoto, A., Kitamura, N. and Nakanishi, S. (1985) J. Biol. Chem. 260, 12054-12059.
- [7] Cole, T., Inglis, A.S., Roxburgh, C.M., Howlett, G.J. and Schreiber, G. (1985) FEBS Lett. 182, 57-61.
- [8] Barlas, A., Okamoto, H. and Greenbaum, L.M. (1985) Biochem. Biophys. Res. Commun. 129, 280-286.
- [9] Kageyama, R., Kitamura, N., Ohkubo, H. and Nakanishi, S. (1985) J. Biol. Chem. 260, 12060-12064.

- [10] Fukuhara, M. and Tsurufuji, S. (1969) Biochem. Pharmacol. 18, 475-484.
- [11] Anastasi, A., Brown, M.A., Kembhavi, A.A., Nicklin, M.J.H., Sayers, C.A., Sunter, D.C. and Barrett, A.J. (1983) Biochem. J. 211, 129-138.
- [12] Jarvinen, M. (1979) FEBS Lett. 108, 461-464.
- [13] Barrett, A.J. (1972) Anal. Biochem. 47, 280-293.
- [14] Hanspal, I.S., Bushell, G.R. and Ghosh, P. (1983) Anal. Biochem. 132, 288-293.
- [15] Heussen, C. and Dowdle, E.B. (1980) Anal. Biochem. 102, 196-202.
- [16] Davis, B.J. (1964) Ann. NY Acad. Sci. 121, 404-427.
- [17] Laemmli, U.K. (1970) Nature, 227, 680-685.
- [18] Bauer, J., Kurdowska, A., Tran-Thi, Y.-A., Budek, W., Decker, K. and Heinrich, P.C. (1985) Eur. J. Biochem. 146, 347-352.
- [19] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.